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This paper focuses on Chapter 7 of Rudin’s Principles of Mathematical Analysis. Here, we
present a proof for Theorem 7.9, which was omitted, present the proof suggested in the remark
following the proof of Theorem 7.17, give an improvement to the proof of Theorem 7.26, the
Weierstrass Theorem, and give sketches of a few of the Qn from the proof of Theorem 7.26.

Theorem 7.9 (Rudin). Suppose

lim
n→∞

fn(x) = f(x) (x ∈ E).

Put
Mn = sup

x∈E
|fn(x)− f(x)| .

Then fn → f uniformly on E if and only if Mn → 0 as n → ∞.

Proof. First, suppose fn → f uniformly on E and fix an ε > 0. Then there is an N ∈ N such
that n ≥ N implies that |fn(x)− f(x)| ≤ ε for all x ∈ E. Taking the supremum,

Mn = sup
x∈E

|fn(x)− f(x)| ≤ ε.

Thus Mn → 0 as n → ∞.

Conversely, suppose Mn → 0 as n → ∞. Then, for any ε > 0, we can find an N ∈ N
so that for n ≥ N , |fn(x)− f(x)| ≤ Mn ≤ ε. Thus fn → f uniformly on E.

Theorem 7.17 (Rudin). Suppose {fn} is a sequence of functions, differentiable on [a, b] and
such that {fn(x0)} converges for some point x0 on [a, b]. If {f ′

n} converges uniformly on [a, b],
then {fn} converges uniformly on [a, b], to a function f , and

f ′(x) = lim
n→∞

f ′
n(x) (a ≤ x ≤ b). (7.1)

After proving this theorem, Rudin remarks that,

If the continuity of the functions f ′
n is assumed in addition to the above hypotheses,

then a much shorter proof of (7.1) can be based on Theorem 7.16 and the
fundamental theorem of calculus.

1



For completeness’ sake, we restate Theorem 7.16, then prove Theorem 7.17 with the
additional hypothesis.

Theorem 7.16 (Rudin). Let α be monotonically increasing on [a, b]. Suppose fn ∈ R(α) on
[a, b], for n = 1, 2, 3, . . ., and suppose fn → f uniformly on [a, b]. Then f ∈ R(α) on [a, b],
and ˆ b

a

f dα = lim
n→∞

ˆ b

a

fn dα.

Theorem 7.17 (Additional Hypothesis). Suppose {fn} is a sequence of functions, differ-
entiable on [a, b] and such that {fn(x0)} converges for some point x0 on [a, b] and f ′

n is
continuous on [a, b]. If {f ′

n} converges uniformly on [a, b], then {fn} converges uniformly on
[a, b], to a function f , and

f ′(x) = lim
n→∞

f ′
n(x) (a ≤ x ≤ b).

Proof. In the setup of Theorem 7.16, let α(x) = x. Then f ′
n ∈ R on [a, b]. Let g denote the

function such that f ′
n → g uniformly on [a, b]. Then also g(x) = lim

n→∞
f ′
n(x). By Theorem

7.16, g ∈ R on [a, b] and, when x ∈ [a, b],

lim
n→∞

ˆ x

a

f ′
n(t) dt =

ˆ x

a

g(t) dt.

Now, by the fundamental theorem of calculus, since each f ′
n is continuous,

fn(x) = fn(a) +

ˆ x

a

f ′
n(t) dt.

Take x = x0. We then have that

fn(x0) = fn(a) +

ˆ x0

a

f ′
n(t) dt.

By Theorem 7.16, the sequence of integrals{ˆ x0

a

f ′
n(t) dt

}
→
ˆ x0

a

g(t) dt.

Then fn(a) is equal to the difference of two convergent sequences, and thus convergent. Call
c = lim

n→∞
fn(a). Define

f(x) := c+

ˆ x

a

g(t) dt

so that, by the fundamental theorem of calculus, f ′(x) = g(x). Then

fn(x)− f(x) = fn(a) +

ˆ x

a

f ′
n(t) dt− c−

ˆ x

a

g(t) dt

= fn(a)− c+

ˆ x

a

f ′
n(t)− g(t) dt.
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Applying the triangle inequality,

|fn(x)− f(x)| ≤ |fn(a)− c|+
∣∣∣∣ˆ x

a

f ′
n(t)− g(t) dt

∣∣∣∣ . (7.2)

Set hn(t) = f ′
n(t)− g(t). Note that∣∣∣∣ˆ x

a

hn(t) dt

∣∣∣∣ ≤ ˆ x

a

|hn(t)| dt ≤
ˆ b

a

|hn(t)| dt ≤ (b− a) sup
t∈[a,b]

|hn(t)| .

Taking supremums over x ∈ [a, b], we see that

sup
x∈[a,b]

∣∣∣∣ˆ x

a

f ′
n(t)− g(t) dt

∣∣∣∣ ≤ (b− a) sup
t∈[a,b]

|f ′
n(t)− g(t)| .

Since f ′
n → g uniformly, then as n → ∞, also

sup
x∈[a,b]

∣∣∣∣ˆ x

a

f ′
n(t)− g(t) dt

∣∣∣∣ → 0.

Fix an ε > 0. As n → ∞ in (7.2) after taking supremums over x ∈ [a, b], |fn(a)− c| → 0 and
so does the second term (as above), and, thus, there is an N ∈ N so that for n ≥ N , we get
that |fn(x)− f(x)| ≤ ε for all x ∈ [a, b], so fn → f uniformly on [a, b]. Finally, note that
f ′(x) = g(x) = lim

n→∞
f ′
n(x).

We now give an improved proof and extra justification for Theorem 7.26. First, a Lemma.

Lemma 1.1 (Bernoulli’s Inequality). For real b ≤ 1 and a positive integer n,

(1− b)n ≥ 1− nb.

Proof. Note that (1− b)1 ≥ 1− (1)b. Suppose that for some k ∈ N, (1− b)k ≥ 1− kb. Then,
since 1− b ≥ 0,

(1− b)k+1 ≥ (1− kb)(1− b) = 1− kb− b+ kb2 ≥ 1− (k + 1)b.

By induction, the Lemma follows.

Theorem 7.26 (Rudin). If f is a continuous complex function on [a, b], there exists a
sequence of polynomials Pn such that

lim
n→∞

Pn(x) = f(x)

uniformly on [a, b]. If f is real, the Pn may be taken as real.

Proof. We may assume, without loss of generality, that [a, b] = [0, 1]. If the theorem is proven
in this case, note that any y ∈ [a, b] can be written as y = a+ (b− a)x for an x ∈ [0, 1]. Then
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we can define g : [0, 1] → C so that g(x) = f(a+ (b− a)x). After applying the theorem to g
and getting a sequence Pn(x) of polynomials, we see that

f(y) = g

(
y − a

b− a

)

so that Pn

(
y − a

b− a

)
is also a sequence of polynomials that converges to f(y). We may also

assume that f(0) = f(1) = 0. For, if the theorem is proved in this case, consider

g(x) = f(x)− f(0)− x[f(1)− f(0)] (0 ≤ x ≤ 1).

Here, g(0) = g(1) = 0, so, if g can be obtained as the limit of a uniformly convergent sequence
of polynomials, then the same is true of f since f − g is a polynomial.

Furthermore, we define f(x) to be zero for x outside [0, 1]. Since f(a) = f(b) for
a, b /∈ (0, 1), it is clear that f is uniformly continuous on R \ (0, 1). Since [0, 1] is compact,
f is uniformly continuous on [0, 1] as well. For each ε, let δ be the corresponding δ in the
definition of uniform continuity for f on [0, 1]. Then, given an ε and two points x, y ∈ R so
that |x− y| < δ, we see that:

• If x, y ∈ [0, 1], |f(x)− f(y)| < ε,

• If x, y /∈ (0, 1), then f(x) = f(y) = 0, so |f(x)− f(y)| < ε,

• If x ∈ [0, 1] but y /∈ (0, 1), then either y ≤ 0 or y ≥ 1. If y ≥ 1, then, since also
|x− 1| < δ, we have |f(x)− f(1)| < ε ⇐⇒ |f(x)− 0| < ε ⇐⇒ |f(x)− f(y)| < ε.
The case for y ≤ 0 is handled in the exact same manner.

We put
Qn(x) = cn(1− x2)n (n = 1, 2, 3, . . .),

where cn is chosen so that
ˆ 1

−1

Qn(x) dx = 1 (n = 1, 2, 3, . . .). (7.3)

We need some information about the order of magnitude of cn. Since

ˆ 1

−1

(1− x2)n dx = 2

ˆ 1

0

(1− x2)n dx ≥ 2

ˆ 1/
√
n

0

(1− x2)n dx

≥ 2

ˆ 1/
√
n

0

(1− nx2) dx =
4

3
√
n
>

1√
n
,

where the second inequality follows from Lemma 1.1 with b = x2. It follows from (7.3) that

cn <
√
n. (7.4)

Then when δ ∈ [0, |x|], (7.4) gives a bound for Qn,

Qn(x) ≤
√
n(1− δ2)n (7.5)
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Note that f ∈ R since it is continuous and bounded (Theorem 6.10). Set

Pn(x) =

ˆ 1

−1

f(x+ t)Qn(t) dt (0 ≤ x ≤ 1).

Our assumptions about f show, by a simple change of variables,

Pn(x) =

ˆ 1−x

−x

f(x+ t)Qn(t) dt =

ˆ 1

0

f(u)Qn(u− x) du.

The last integral is a polynomial in x because, by the binomial formula,

ˆ 1

0

f(u)Qn(u−x) du =

ˆ 1

0

f(u)cn

n∑
k=0

(
n

k

)
(−(u−x)2)k du =

ˆ 1

0

f(u)cn

n∑
k=0

(
n

k

)
(−1)k(u−x)2k.

With another application of the binomial formula,

ˆ 1

0

f(u)cn

n∑
k=0

(
n

k

)
(−1)k(u− x)2k =

ˆ 1

0

f(u)cn

n∑
k=0

(
n

k

)
(−1)k

2k∑
j=0

(
2k

j

)
u2k−j(−1)jxj.

Since the sums are finite,

ˆ 1

0

f(u)Qn(u− x) du = cn

n∑
k=0

2k∑
j=0

(
n

k

)(
2k

j

)
(−1)k+jxj

ˆ 1

0

f(u)u2k−j du.

Each

ˆ 1

0

f(u)u2k−j du ∈ C, so the remaining expression is a function only of x: a polynomial

of degree at most 2n. Thus {Pn} is a sequence of polynomials, which are real if f is real.
Given ε > 0, we choose δ > 0 such that |y − x| < δ implies

|f(y)− f(x)| < ε

2
.

Let M = sup |f(x)|. Using (7.3), (7.5), and the fact that Qn(x) ≥ 0, we see that, using
Theorem 6.13 for the first inequality, for 0 ≤ x ≤ 1,

|Pn(x)− f(x)| =

∣∣∣∣ˆ 1

−1

(f(x+ t)− f(x))Qn(t) dt

∣∣∣∣
≤
ˆ 1

−1

|f(x+ t)− f(x)|Qn(t) dt

≤ 2M

ˆ −δ

−1

Qn(t) dt+
ε

2

ˆ δ

−δ

Qn(t) dt+ 2M

ˆ 1

δ

Qn(t) dt

≤ 4M
√
n(1− δ2)n +

ε

2
< ε

for large enough n, which proves the theorem.

Below are plots of the Qn(x)s for n = 1, 2, 3 on [−2, 2].

5



(a) n = 1 (b) n = 2 (c) n = 3
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